DNA damage-site recognition by lysine conjugates.

نویسندگان

  • Boris Breiner
  • Jörg C Schlatterer
  • Igor V Alabugin
  • Serguei V Kovalenko
  • Nancy L Greenbaum
چکیده

Simple lysine conjugates are capable of selective DNA damage at sites approximating a variety of naturally occurring DNA-damage patterns. This process transforms single-strand DNA cleavage into double-strand cleavage with a potential impact on gene and cancer therapy or on the design of DNA constructs that require disassembly at a specific location. This study constitutes an example of DNA damage site recognition by molecules that are two orders of magnitude smaller than DNA-processing enzymes and presents a strategy for site-selective cleavage of single-strand nucleotides, which is based on their annealing with two shorter counterstrands designed to recreate the above duplex damage site.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intracellular DNA Damage by Lysine-Acetylene Conjugates

Previously, we reported the design and properties of alkyne C-lysine conjugates, a powerful and tunable family of DNA cleaving reagents. We also reported that, upon photoactivation, these molecules are capable of inducing cancer cells death. To prove that the cell death stems from DNA cleavage by the conjugates, we investigated intracellular DNA damage induced by these molecules in LNCap cancer...

متن کامل

Lysine-enediyne conjugates as photochemically triggered DNA double-strand cleavage agents.

Statistical analysis of DNA-photocleavage by two types of lysine-enediyne conjugates confirms that more double-strand breaks are produced than can be accounted for by coincident single-strand breaks.

متن کامل

The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response.

The regulation of Ubiquitin (Ub) conjugates generated by the complex network of proteins that promote the mammalian DNA double-strand break (DSB) response is not fully understood. We show here that the Ub protease POH1/rpn11/PSMD14 resident in the 19S proteasome regulatory particle is required for processing poly-Ub formed in the DSB response. Proteasome activity is required to restrict tudor d...

متن کامل

Role for 53BP1 Tudor domain recognition of p53 dimethylated at lysine 382 in DNA damage signaling.

Modification of histone proteins by lysine methylation is a principal chromatin regulatory mechanism (Shi, Y., and Whetstine, J. R. (2007) Mol. Cell 25, 1-14). Recently, lysine methylation has been shown also to play a role in regulating non-histone proteins, including the tumor suppressor protein p53 (Huang, J., and Berger, S. L. (2008) Curr. Opin. Genet. Dev. 18, 152-158). Here, we identify a...

متن کامل

The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage

The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 32  شماره 

صفحات  -

تاریخ انتشار 2007